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Process adjustment uses information from past runs to adjust settings for the next run and bring the output to its target. The efficiency
of a control algorithm depends on the nature of the disturbance and dynamics of the process. This article develops a control algorithm
when the disturbance is a general ARMA(p, q) process, in the presence of measurement error and adjustment error together with
a random initial bias. Its optimality property is established and the stability conditions are derived. It is shown that the popular
Exponentially Weighted Moving Average (EWMA) controller is a special case of the proposed controller. In addition, Monte Carlo
simulations are conducted to study the finite sample behavior of the proposed controller and compare it with the proportional–
integral–derivative controller when the disturbance is an ARMA(1,1) process and with the EWMA controller when the disturbance
is an IMA(1,1) process. The ARMA controller is also implemented to control an ARMA(2,1) disturbance and its performance is
compared with the other two controllers. All of the results reflect the new controller’s superiority when multiple sources of uncertainty
exist or a general ARMA(p, q) disturbance is incurred.
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1. Introduction

In engineering and manufacturing, quality engineering is
extensively involved in developing systems to ensure that
products or services meet customers’ requirements. Despite
efforts to remove the causes of variation such as inaccurate
testing methods, fluctuations in raw materials, and differ-
ences in operators, processes may still not be fully brought
to a satisfactory state of stability. For example, an incorrect
machine setup can result in an offset in the quality charac-
teristic of the parts produced in the batch of product made
subsequent to the setup; many semiconductor manufactur-
ing processes can suffer from sudden component failures,
gradual wear of components, or aging effects. To produce
conforming products, a scheme of process adjustment or
regulation is usually necessary for such processes to gen-
erate control actions and maintain the output on target.
A recent review on statistical process adjustment can be
found in Del Castillo (2006).
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To motivate the type of adjustment problems considered
in this article, we start by presenting the following classic
Single-Input Single-Output (SISO) process:

yt = f (xt−1) + nt, (1)

where yt is a continuous process output that needs to be
adjusted to its target value τ , xt−1 denotes the process in-
put recipe at the end of run t − 1 (beginning of run t), and
nt denotes the process disturbance that accounts for the
variability in the process. The objective of a statistical pro-
cess adjustment rule is to bring yt as close to τ as possible
by adjusting xt after each run. The efficiency of a control
algorithm depends on the nature of the disturbance—i.e.,
nt—and the dynamics of the process; i.e., f (·). Special forms
of f (·) have been widely studied in the literature; see, for ex-
ample, Del Castillo and Hurwitz (1997), Wang and Tsung
(2008), Jin and Tsung (2009), and Lin and Wang (2011).

For the case that f (x) = α + x and nt is White Noise
(WN), Grubbs (1954) originally studied the setup adjust-
ment problem. He designed an adjustment policy, which
was called a “harmonic rule” by Trietsch (1998), to tune
the process yt close to the target value if at the startup yt
was off target by d units, where d is assumed to be an un-
known value. In the same paper, Grubbs also presented a
second, “extended rule,” which was designed for the case
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that d is allowed to be a random variable with a prior
distribution. Under the assumption that nt follows a nor-
mal distribution, a general formulation and unification of
these two control rules and others for setup adjustment
problems can be found in Del Castillo et al. (2003). These
authors showed how the previous setup adjustment rules
are all cases of Linear Quadratic Gaussian (LQG) con-
trol. Instead of assuming process parameters are all known
and considering only off-target costs, Lian and Del Castillo
(2006) gave a solution to the setup adjustment problem us-
ing a dynamic programming formulation for the case that
the measurement error variance is unknown and there are
also fixed adjustment costs in additions to quadratic off-
target costs. Lian et al. (2006) designed a new Sequential
Monte Carlo (SMC) adjustment method to solve the setup
adjustment problem under the scenario that the initial bias
mean, variance, and measurement error variance are all un-
known. Lian and Del Castillo (2007) considered a similar
problem except for assuming no initial bias but adjust-
ment error incurred when adjusting xt. And the variance
of the adjustment error was also assumed to be unknown
in that paper. The authors designed an adaptive deadband
control rule using a Bayesian approach based on SMC
methods.

In addition to setup problems, various Run-to-Run
(R2R) controllers have been developed in semiconduc-
tor manufacturing with respect to Equation (1) when
f (x) = α + βx. A popular controller in industrial practice
is the Exponentially Weighted Moving Average (EWMA)
controller, which was proposed in Ingolfsson and Sachs
(1993). Variants of the EWMA controller include the dou-
ble EWMA controller investigated in Butler and Stefani
(1994), Del Castillo (1999), and Tseng et al. (2002) and the
variable EWMA controller proposed in Tseng et al. (2003)
and Tseng et al. (2007). When f (x) = α + βx and nt is an
IMA(1,1) process that can be represented by

nt = nt−1 + εt + θεt−1, |θ | < 1 and εt ∼ WN, (2)

the EWMA controller enjoys the Minimum Mean Square
Error (MMSE) property when all of the parameters
(α, β, θ) are known and the initial bias d is zero (Box et al.,
1994). However, several factors may prevent the EWMA
controller from achieving its optimal status. First, pro-
cess parameters are seldom known and parameter estima-
tion uncertainties always exist. As a result, the initial bias
d rarely has a value of zero. Robustness of the EWMA
controller when the parameters are estimated instead of
known was investigated in Ingolfsson and Sachs (1993) and
He et al. (2009). Second, process disturbance may not fol-
low an IMA model; for example, a more general ARMA
model may fit the disturbance better because of cer-
tain inertia effects. Third, multiple error sources, such as
measurement error in observing the process output yt and
adjustment error in changing settings of controllable fac-
tors xt, may exist. These errors are not considered in
constructing the EWMA controller. In fact, the EWMA

controller was developed based on the single source of er-
ror model. The only error considered in EWMA controller
is εt in Equation (2), hereafter referred to as the intrinsic
error within the disturbance. The intrinsic error cannot be
eliminated by any control algorithm.

Another widely used feedback controller is a
Proportional–Integral–Derivative (PID) controller, which
involves three separate constant parameters: the propor-
tional, the integral, and the derivative values, denoted by
kP, kI , and kD. Heuristically, these values can be interpreted
in terms of time: kP depends on the present error, kI on the
accumulation of past errors, and kD is a prediction of future
errors based on current rate of change. PID controllers are
widely used in automated process control. Tsung and Shi
(1999) developed a methodology to choose kP, kI , and kD
when the process disturbance is an ARMA(1,1) process.
However, they did not consider the measurement error, the
adjustment error, and the initial bias of the process. For a
general ARMA(p, q) disturbance, they also did not provide
an implemental method.

In this article, we build a more general framework to con-
sider the problem that the process disturbance is assumed
an ARMA(p,q) disturbance. The ARMA model has been
widely used to describe process dynamics; for example, the
ARMA(1,1) model in Tsung and Shi (1999); ARMA(2,1)
model in Hong and Macgregor (1975), MacGregor (1976),
Pandit and Wu (1977) and Jiang et al. (2000); and the
ARMA(3,2) model in Jiang et al. (2000). In addition to the
intrinsic error, the new framework considers the measure-
ment error and the adjustment error as well as allowing an
initial bias with a prior distribution. Some setup adjustment
problems and some R2R control problems can be included
in the new framework. We derive an optimal control algo-
rithm, the ARMA controller, based on the multiple source
of error framework. Since an ARMA approach can be used
to model any weakly stationary time series process as im-
plied by the Wold representation theorem (Wold, 1948), the
proposed ARMA controller can be applied to a wide range
of disturbances.

The rest of this article is organized as follows. Section 2
gives the state-space framework of the model we consider.
We first build the framework for a SISO system and then
quickly extend the results to a Multiple-Input Multiple-
Output (MIMO) system. Section 3 develops the ARMA
controller based on Bayesian rule and Kalman filter theory
and establishes its optimality under the LQG formulation
without considering the adjustment cost. Section 4 presents
the ARMA controller’s stability conditions. Relations be-
tween the ARMA controller and the EWMA controller are
examined in Section 5. Section 6 provides a performance
analysis of ARMA controller, PID controller, and EWMA
controller under multiple types of uncertainty. Conclud-
ing remarks and discussion of future work are made in
Section 7.

The notation used in this article is as follows. Scalars
are denoted by lowercase letters and column vectors by
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lowercase letters in bold font. Matrices are denoted by up-
per case letters. For a column vector v, v# denotes the num-
ber of components in v. For an unknown parameter β or
vector β, β̂ or β̂ denotes its estimator, respectively. B is
the back-shift operator; i.e., Bnt = nt−1; 0 denotes a vector
or matrix with all components 0s. yt

1 is the history of the
output process from 1 to t; i.e., {y1, y2, . . . , yt}. We let

diag(A1, A2, . . . , As) =

⎛⎜⎜⎝
A1

A2
. . .

As

⎞⎟⎟⎠ .

2. Problem description

In this section, we will first consider a SISO system with a
general ARMA(p,q) disturbance, involving measurement
errors, adjustment errors, as well as an initial bias with a
prior distribution. The SISO system’s state-space frame-
work will be developed. Next we quickly extend the results
to a MIMO system.

2.1. Model setup for a SISO system

Suppose a simple process to be controlled, yit, which cor-
responds to the i th component of a complex system, can
be expressed as

yit = git + nit + eit, (3)

where git is the state of yit at time t; nit is an ARMA(p,q)
process satisfying

φi (B)nit = θi (B)εi t, t = 0, ±1, . . . ,

where φi (z) = 1 − φi1z − φi2z2 − · · · − φi pzp and θi (z) =
1 + θi1z + θi2z2 + · · · + θiq zq . {εi t} ∼ WN(0, σ 2

iε) and σ 2
iε is

known. We call eit the measurement error for yit with
{eit} ∼ WN(0, σ 2

ie), where σ 2
ie is known. Neither git nor nit

can be measured or observed directly. At time t = 0, the
process initial bias d (i.e., gi0) is assumed to be a random
variable with mean and variance μid and σ 2

id , respectively.
At time t ≥ 1, suppose we need to make an adjustment of
magnitude 	 git to git to bring the process output to target
in the next run. That is,

gi (t+1) = git + 	 git + wi t, (4)

where wi t is a WN process called the adjustment er-
ror with known variance σ 2

iw. Assume Corr(eit, wi t) =
Corr(eit, εi t) = Corr(wi t, εi t) = 0. In practice, the process
adjustment 	git may not be directly made. Instead, it is
assumed to be done by adjusting a controllable factor, xjt,
via the following model:

	git = βi j	xjt, βi j �= 0, (5)

where xjt corresponds to the j th controllable factor and βi j
is called the process gain. For a SISO system, we can set j ≡

i . If 	xj0 = 0, then 	 gi0 = 0. Without loss of generality,
the target τ is assumed to be 0 in the rest of this article. For
a positive time index T, we hope to determine the optimal
	xjt, t = 1, 2, . . . , T − 1 that satisfy

min
{	xjt, t=1,2,...,T−1}

E

(
T∑

t=1

y2
i t

)
. (6)

The objective function E(
∑T

t=1 y2
i t) is the process Mean

Square Error (MSE), a measure of off-target cost for the
process output yit (t = 1, 2, . . . , T). Here we assume the
adjustment cost is neglectable in comparison with the off-
target cost.

Brockwell and Davis (1991) gave two state-space rep-
resentations for a general ARMA(p, q) process. Let r =
max(p, q + 1), φik = 0 for k > p, θik = 0 for k > q and
θi0 = 1. Following their first representation, we can write
nit as follows:

nit = θ τ
i vi t,

vi (t+1) = Gi vi t + c εi (t+1), t = 0, ±1, · · · ,

where θ i = (θi (r−1) θi (r−2) · · · θi0)τ , vi t = (vi (t−r+1)vi (t−r+2)
· · · vi t)τ , c = (0 · · · 0 1)τ , c# = r , and

Gi =

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
φir φi (r−1) φi (r−2) · · · φi1

⎞⎟⎟⎟⎟⎠
r×r

.

From Equations (3) to (5) and the state-space representa-
tion of nit, it is easy to get yit’s state-space representation
as follows:

yit = hτ
i li t + eit, eit ∼ N

(
0, σ 2

ie

)
, (7)

li (t+1) = Ai li t + j βi j	xjt + zi t, li0 ∼ N(̂li0, Pi0)
zi t ∼ N(0, 
iz), (8)

where hi = (1 θ τ
i )τ , li t = (git vτ

i t)
τ , j = (1 0)τ , zi t =

(wi t 0 εi t)
τ , l̂i0 = (μid , 0)τ , Pi0 = diag(σ 2

id , 0)(r+1)×(r+1),
Ai = diag(1, Gi )(r+1)×(r+1), 
iz = diag(σ 2

iw, 0, . . . , 0,

σ 2
iε)(r+1)×(r+1), and h#

i = l#i t = l̂#i0 = j# = z#
i t = r + 1.

The family of a general ARMA(p, q) process is a broad
class and includes many common disturbances. For exam-
ple, as Table 1 shows, when φi1 and θi1 of the ARMA(1,1)-
type disturbance takes certain values, it reduces to some
special time series. It is worth noting that although the
conventional ARMA(1,1) model only approaches the non-
stationary IMA(1,1) model approximately when φi1 → 1,
all of the derivations and results presented in the rest of
this work still hold even if φi1 = 1 exactly. Therefore, the
method proposed in this work also solves the control of pro-
cesses with an IMA(1,1) disturbance series exactly rather
than in an approximate way.
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Table 1. Types of disturbance included in ARMA(1,1)

φi1 = 0 |φi1| < 1 φi1 = 1

θi1 = 0 WN AR(1) Random walk
|θi1| < 1 MA(1) ARMA(1,1) IMA(1,1)

2.2. Model setup for a MIMO system

Now we consider a complex linear system with s out-
puts yit (i = 1, 2, . . . , s) and m controllable factors xjt
( j = 1, 2, . . . , m) and quickly extend the state-space frame-
work of the SISO system to the (m × s) MIMO system,
where m ≥ s. Again, we let the s outputs modeled as devi-
ations from target and suppose that the MIMO system can
be described as follows:

yt = gt + nt + et, et ∼ N(0, 
e),
gt+1 = gt + B	xt + wt, wt ∼ N(0, 
w),

where yt = (y1t y2t . . . yst)τ ; gt = (g1t g2t . . . gst)τ ; nt =
(n1t n2t . . . nst)τ ; et = (e1t e2t . . . est)τ ; wt = (w1tw2t
. . . wst)τ ; B = (βi j )s×m, and 	xt = (	x1t 	x2t . . . 	xmt)τ .
Each component of vector nt can be modeled by a general
ARMA(p, q) process. The orders p and q are determined
by the maximum orders of the ARMA disturbances for all
of the s components. Similar to a SISO system, we can get
nt’s state-space representation as follows:

nt = �τ vt,

vt+1 = Gvt + Cεt+1,

where εt = (ε1t ε2t . . . εst)τ , � = diag(θ1, θ2, . . . , θ s)rs×s ,
G = diag(G1, G2, . . . , Gs)rs×s , C = diag(c, c, . . . , c)rs×s ,
vt = (vτ

1t vτ
2t . . . vτ

st)
τ , and v#

t = rs. Then we can derive yt’s
state-space representation as

yt = Hτ lt + et, et ∼ N(0, 
e), (9)
lt+1 = Alt + J B	xt + zt, l0 ∼ N(̂l0, P0)

zt ∼ N(0, 
z), (10)

where A = diag(A1, A2, . . . , As)(r+1)s×(r+1)s , H = diag(h1,

h2, . . . , hs)(r+1)s×s , J = diag(j, j, . . . , j)(r+1)s×s , lt = (lτ1tl
τ
2t

. . . lτst)
τ , zt = (zτ

1t zτ
2t . . . zτ

st)
τ , l̂0 = (̂lτ10 l̂τ20 . . .̂ lτs0)τ , P0 =

diag(P10, P20, . . . , Ps0)(r+1)s×(r+1)s , 
e = diag(σ 2
1e, σ

2
2e, . . . ,

σ 2
se)s×s , 
z = diag(
1z, 
2z, . . . , 
sz)(r+1)s×(r+1)s, and l#t =

l̂#0 = z#
t = (r + 1)s. Then the optimization problem for the

MIMO system is for a positive time index T, we hope to
determine the optimal 	xt, t = 1, 2, . . . , T − 1 that satisfy

min
{	xt, t=1,2,...,T−1}

E

(
T∑

t=1

yτ
t yt

)
. (11)

3. The ARMA controller

Let us define the posterior mean of lt−1 as l̂t−1 =
E(lt−1|yt−1

1 ) and the posterior variance of lt−1 as Pt−1 =

Var(lt−1|yt−1
1 ). Then we have the posterior distribution of

lt−1 given the observations {y1, y2, . . . , yt−1} as

lt−1|yt−1
1 ∼ N(̂lt−1, Pt−1).

Then based on Equation (10), we can get that the prior
distribution of lt at time t − 1 is

lt|yt−1
1 ∼ N(Âlt−1 + JB	xt−1, APt−1 Aτ + 
z). (12)

With the setup above, solution to the optimization prob-
lems (9)–(11) can be derived via the classic LQG formula-
tion. In Appendix A, we give a complete solution to a more
general problem in Lemma A1. The following Theorem 1
only presents the optimal controller we are interested in
this article.

Theorem 1. (ARMA controller) If B is an invertible square
matrix, then the optimal control algorithm that solves Equ-
tation (11) for models (9)–(10) is

	xt = −B−1 Hτ Âlt, t = 1, 2, . . . . (13)
where l̂t = (A− J Hτ A)̂lt−1 + Ktyt, (14)

Kt = (APt−1 Aτ + 
z)H[Hτ (APt−1 Aτ + 
z)H
+ 
e]−1, (15)

Pt = (I − Kt Hτ )(APt−1 Aτ + 
z), (16)
l̂0 = (̂lτ10 l̂τ20 . . .̂ lτs0)τ and P0

= diag(P10, P20, · · · , Ps0)(r+1)s×(r+1)s . (17)

It is worth noting that Equations (13) to (17) are all
irrelated to T, so the ARMA controller also solves

min
{	xt, t=1,2,...}

E

( ∞∑
t=1

yτ
t yt

)
. (18)

That is to say, the ARMA controller is an optimal con-
troller to both the short-run (finite-horizon) problem and
the long-run (infinite-horizon) problem. Note that Theo-
rem 1 is naturally applicable to a SISO system (m = s = 1)
where B = β �= 0. The proof of Theorem 1 is relegated
to Appendix A. For the purpose of reference, we present
in Corollary 1 the ARMA controller’s version for a SISO
system.

Corollary 1. The optimal control algorithm that solves Equa-
tion (6) or

min
{	xjt, t=1,2,...}

E

( ∞∑
t=1

y2
i t

)
, (19)
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Fig. 1. The implementation procedure of the ARMA controller.
The equation used for each step is indicated by the equation
number.

for models (7)–(8) is

	xjt = − 1
βi j

hτ
i Aî li t, t = 1, 2, · · · , (20)

where l̂i t = (
Ai − jhτ

i Ai
)̂
li (t−1) + Kit yit, (21)

Kit = (
Ai Pi (t−1) Aτ

i + 
iz
)
hi
[
hτ

i

(
Ai Pi (t−1) Aτ

i

+ 
iz
)
hi + σ 2

ie

]−1
, (22)

Pit = (
I − Kithτ

i

)(
Ai Pi (t−1) Aτ

i + 
iz
)
, (23)

l̂i0 = (
μid , 0

)τ
and

Pi0 = diag
(
σ 2

id, 0
)

(r+1)×(r+1). (24)

The implementation of the ARMA controller is illus-
trated in Fig. 1. Given parameters and initial values in the
offline procedure, all of the values recursively update on-
line according to the algorithm. At the startup, K1 can be
derived from Equation (15) based on P0. Upon the obser-
vation of y1, l̂1 can be computed from Equation (14) based
on K1 and l̂0. Then the first adjustment 	x1 can be ob-
tained by applying Equation (13). From Equation (16), we
can compute P1 using K1 and P0. Then K2 is derived from
Equation (15) in the way K1 is obtained, and the control
process continues.

Equation (20) is the optimal control rule for a SISO
system with a general ARMA(p, q) disturbance. Note that
nit will become a WN when φik = θik = 0 (k = 1, 2, · · · , r ).
At this time, if we set βi j = 1, Equation (20) will become
	xjt = − ĝi t, which is exactly the adjustment rule derived
by Del Castillo et al. (2003). In Appendix B, we shown
that E(

∑T
t=1 yτ

t yt) must be greater than all the sums of σ 2
iw,

σ 2
iε, and σ 2

ie (i = 1, 2, . . . , s), which makes sense because
control schemes cannot correct the adjustment error, the
measurement error, or the intrinsic error within the process

disturbance in spite of their capabilities of eliminating the
“effects” of the process disturbance.

4. Stability conditions

In order to implement the ARMA controller, some param-
eters need to be estimated first. Specifically, the invertible
matrix B, which is the process gain, is usually unknown.
Therefore, with an offline estimate B̂, the adjustment rule
for xt becomes

	xt = −B̂−1 Hτ Âlt. (25)

Based on Equations (9) and (12), E(yt) can be written as

E(yt) = E[E
(
yt|yt−1

1

)
] = Hτ

[
AE(̂lt−1) + J BE(	xt−1)

]
.

(26)
Combining Equation (26) with Equation (25), we get

E(yt) = (I − BB̂−1)Hτ AE(̂lt−1), (27)

and from Equation (A11) in Appendix A and Equation
(25), we get

l̂t = (A− JHτ A)̂lt−1 + Ktyt

+ (J − Kt)(I − BB̂−1)Hτ Âlt−1. (28)

Note that when B̂ = B, E(yt) = 0 for any t ≥ 1 and Equa-
tion (28) will become Equation (14). The stability condi-
tions for the ARMA controller are given in Theorem 2.

Theorem 2. Let D = A− J BB̂−1 Hτ A, then the asymptot-
ical stability conditions of the control rule (25) for model
(9)–(10) with B and B̂ invertible matrices are:

(i) 0 < λ1(Dτ D) < 1; (29)

(ii) There exist x∗ < ∞ and y∗ > 0, such that

λ1
(
Hτ APt−1 Aτ H + Hτ D E

(̂
lt−1̂lτt−1

)
Dτ H

)
≤ x∗ f or all t > y∗, (30)

where λ1(X) denotes the largest eigenvalue of matrix X; Pt
and l̂t are described in Equations (16) and (28) respectively;
l̂0 and P0 are given by Equation (17).

The proof of Theorem 2 can be found in Appendix C.
Note that for a SISO system, the invertible matrices B
and B̂ are equivalent to βi j (�= 0) and β̂i j (�= 0). It is easy
to verify that the stability condition (29) is equivalent to
0 < βi j/β̂i j < 2 and the condition (30) is equivalent to the
fact that there exist x∗ < ∞ and y∗ > 0 such that λ1(Pt−1 +
(1 − βi j/β̂i j )2E(̂lt−1̂lτt−1)) ≤ x∗ for all t > y∗.

5. ARMA controller versus EWMA controller

An interesting question is how the ARMA controller re-
lates to the widely used EWMA controller. Without loss of
generality, we only focus on a SISO system. The following
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Table 2. Influence of the measurement error

nt is ARMA(1,1) φ1 = 0.859 θ1 = −0.164

ARMA controller PID controller
(φ̂1 = 0 .859 , (kP = 0 .24 , kI = 0 .58 ,

θ̂1 = −0 .164) kD = −0 .08)

σe AMSE (SEAMSE) AMSE (SEAMSE)

0 0.994 (0.004) 1.046 (0.005)
0.2 1.061 (0.005) 1.116 (0.005)
0.4 1.231 (0.006) 1.303 (0.006)
0.6 1.497 (0.007) 1.609 (0.007)
0.8 1.860 (0.008) 2.049 (0.009)
1.0 2.313 (0.010) 2.617 (0.012)
1.2 2.829 (0.013) 3.290 (0.016)
1.4 3.422 (0.014) 4.100 (0.020)
1.6 4.099 (0.019) 5.048 (0.025)
1.8 4.862 (0.022) 6.093 (0.031)
2.0 5.654 (0.025) 7.237 (0.035)

nt is IMA(1,1) θ1 = −0.8

ARMA controller EWMA controller
(φ̂1 = 1, (ω = 1+

θ̂1 = −0.8) θ̂1 = 0.2)

AMSE (SEAMSE) AMSE (SEAMSE)

0.994 (0.004) 0.994 (0.004)
1.047 (0.005) 1.047 (0.005)
1.178 (0.006) 1.179 (0.006)
1.389 (0.006) 1.393 (0.006)
1.695 (0.008) 1.705 (0.008)
2.089 (0.009) 2.112 (0.010)
2.550 (0.012) 2.589 (0.012)
3.087 (0.013) 3.155 (0.014)
3.731 (0.017) 3.830 (0.018)
4.431 (0.020) 4.570 (0.021)
5.219 (0.023) 5.406 (0.024)

theorem shows that the EWMA controller is a special case
of the ARMA controller.

Theorem 3. The following control problem defined by Equa-
tions (31) to (33):

yit = αi + βi j xj (t−1) + nit, (31)

ait = ω(yit − β̂i j xj (t−1)) + (1 − ω)ai (t−1), ai0 = d,

(32)

xjt = − ait

β̂i j
, (33)

is equivalent to the control problem defined by Equations
(34) to (38).

yit = git + nit + eit, (34)
gi (t+1) = git + βi j	xjt + wi t,, (35)

eit = wi t = 0, (36)

	xjt = − 1

β̂ i j
ωyit, (37)

gi0 = d. (38)

The proof of Theorem 3 can be found in Appendix D.
From Theorem 3 we know that, in comparison with the
ARMA controller, the traditional EWMA controller con-
siders neither measurement error nor adjustment error (i.e.,
eit = wi t = 0, then σie = σiw = 0). Second, the initial bias
d of yit from the target is assumed to be unknown but a
fixed constant in the traditional EWMA controller (i.e.,
μid = d and σid = 0), whereas it is assumed to be a ran-
dom variable with a prior distribution having mean and
variance be μid and σ 2

id , respectively, in the ARMA con-
troller. Last but not least, the parameter ω in the traditional
EWMA controller is set haphazardly by practitioners. As
a rule of thumb, ω is usually between 0.1 and 0.3, regard-
less of the disturbance process nit (Hunter, 1986). Thus, in

general 	xjt defined by Equation (37) is not equal to that
by Equation (20) even if β̂i j = βi j , which means that the
traditional EWMA controller is not optimal for a general
ARMA(p, q) disturbance. Only when the following four
conditions are satisfied does Equation (37) equal Equation
(20): (i) nit is an IMA(1,1) process with parameter θi1; (ii)
ω = 1 + θi1; (iii) d = 0; and (iv) β̂i j = βi j . This fact can be
easily verified. Hence, the traditional EWMA controller is
a special case of the ARMA controller and the EWMA
controller could reach its optimality in a very rare case.

6. Performance analysis

For simplicity, in this section, we study the performance
of the newly proposed ARMA controller under multiple
scenarios through Monte Carlo simulations and only focus
on the SISO system of Equations (3) to (5) and ignore the
model parameters suffix i or j in the rest of this article; i.e.,
nt replaces nit, β replaces βi j , etc. The proposed ARMA
controller in this work can be applied to any general ARMA
disturbance series. In the following, we first conduct a per-
formance study assuming that the disturbance nt follows an
ARMA(1,1) process and an IMA(1,1) process, respectively,
and then apply it to an ARMA(2,1) disturbance model.
When nt is an ARMA(1,1) process, the performance of the
PID controller introduced in Tsung and Shi (1999) will also
be evaluated and compared with that of the ARMA con-
troller. As in that paper’s example, we set φ1 = 0.895 and
θ1 = −0.164 for the ARMA(1, 1) disturbance. The PID pa-
rameters kP, kI , and kD are obtained by checking the PID
design maps for ARMA(1,1) disturbance in Tsung and Shi
(1999). Note that the parameter θ1 of ARMA(1,1) process
in this article corresponds to −θ1 in Tsung and Shi (1999).
When nt is an IMA(1,1) process, the performance of the
EWMA controller will be evaluated and compared with
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Fig. 2. AMSE with different σe for the ARMA controller and other controllers when the disturbance is (a) ARMA(1,1) and (b)
IMA(1,1), respectively. The black solid line is for the ARMA controller, whereas the red dashed line is for the alternative.

that of the ARMA controller. As we mentioned before,
the EWMA controller may be an MMSE controller for
an IMA(1,1) disturbance. We arbitrarily set θ1 = −0.8 for
the IMA(1, 1) disturbance and the EWMA parameter ω is
set to be 1 + θ1 = 0.2. Measurement errors and adjustment
errors are allowed in the simulations.

Seven scenarios are examined. In Scenario 1, the effect of
the measurement error et on the ARMA, PID, and EWMA
controllers is investigated; in Scenario 2, the effect of the
adjustment error wt is explored; in Scenario 3, we inves-
tigate the joint effect of both types of errors on the three

controllers; in Scenario 4, we look into the effect of the pro-
cess initial bias d; in Scenario 5, we study how the estimate
of the process gain β̂ affects the controllers; in Scenario 6,
we investigate the controllers’ performance when the pa-
rameters in the disturbance nt are unknown and cannot be
estimated accurately; i.e., φ̂1 �= φ1 and θ̂1 �= θ1; and in Sce-
nario 7, we randomly draw one simulation and show the
three controllers’ performance on an ARMA(2,1) distur-
bance. Except for Scenario 6, we set φ̂1 = φ1 and θ̂1 = θ1
for simplicity. The standard deviation for the intrinsic error
σε is set to one in all simulations except for in Scenario 7.

Table 3. Influence of the adjustment error

ntis ARMA(1, 1) φ1 = 0.859 θ1 = −0.164 nt is IMA(1,1) θ1 = −0.8

ARMA controller PID controller ARMA controller EWMA controller
(φ̂1 = 0.859, θ̂1 = −0.164) (kP = 0.24, kI = 0.58, kD = −0.08) (φ̂1 = 1, θ̂1 = −0.8) (ω = 1 + θ̂1 = 0.2)

σw AMSE (SEAMSE) AMSE (SEAMSE) AMSE (SEAMSE) AMSE (SEAMSE)

0 0.994 (0.004) 1.046 (0.005) 0.994 (0.004) 0.994 (0.004)
0.2 1.068 (0.005) 1.117 (0.005) 1.099 (0.005) 1.112 (0.005)
0.4 1.210 (0.006) 1.303 (0.006) 1.308 (0.006) 1.426 (0.008)
0.6 1.425 (0.006) 1.600 (0.008) 1.595 (0.007) 1.970 (0.012)
0.8 1.706 (0.007) 2.023 (0.009) 1.941 (0.009) 2.747 (0.020)
1.0 2.080 (0.009) 2.586 (0.012) 2.362 (0.011) 3.672 (0.027)
1.2 2.537 (0.012) 3.297 (0.016) 2.846 (0.013) 4.925 (0.040)
1.4 3.067 (0.014) 4.101 (0.020) 3.412 (0.016) 6.363 (0.053)
1.6 3.647 (0.016) 4.994 (0.024) 4.007 (0.017) 7.961 (0.067)
1.8 4.321 (0.020) 6.092 (0.031) 4.710 (0.022) 9.655 (0.087)
2.0 5.082 (0.023) 7.247 (0.036) 5.476 (0.024) 11.836 (0.102)
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Fig. 3. AMSE with different σw for the ARMA controller and other controllers when the disturbance is (a) ARMA(1,1) and
(b) IMA(1,1), respectively. The black solid line is for the ARMA controller, whereas the red dashed line is for the alternative.

We performed 1000 replications for each scenario and
ran 100 steps for yt in each replication. The first 100-run
MSE of yt was computed. The Average MSE (AMSE) of
the 1000 replications is reported in Tables 2 to 8. Also
reported is the standard error in the AMSE (SEAMSE),
which is

SEAMSE = SDMSE√
Number of replicates

,

where SDMSE is the standard deviation of MSEs, and
the number of replicates used in the simulation was 1000.
AMSE measures the performance of the controllers, and
SEAMSE reflects the variability of the AMSE.

6.1. Effect of measurement error

In order to focus on the effect of the measurement error et
on the controllers, we set both the adjustment error wt and
the initial process bias d to zero, and set the estimate of the
process gain β̂ to the true value β.

Table 2 and Fig. 2 show that the AMSE of yt when the
standard deviation of the measurement error σe varies. We
first compare the performance of the ARMA controller
with the PID controller under the ARMA(1,1) disturbance
and then the performance of the ARMA controller with
the EWMA controller under the IMA(1,1) disturbance.
We can observe that the AMSE of yt increases for all of the
controllers when σe increases, no matter whether nt is an

Table 4. AMSE when both types of error exist

nt is ARMA(1, 1) (φ1 = 0.859 θ1 = −0.164) nt isIMA(1, 1) (θ1 = −0.8)

ARMA controller PID controller ARMA controller EWMA controller
φ̂1 = 0.859 kP = 0.24 φ̂1 = 1.0 θ̂1 = −0.8

(σe, σw) θ̂1 = −0.164 kI = 0.58 kD = −0.08 θ̂1 = −0.8 ω = 1 + θ̂1 = 0.2

(0.0, 0.0) 0.994 (0.004) 1.046 (0.005) 0.994 (0.004) 0.994 (0.004)
(0.0, 0.4) 1.210 (0.006) 1.303 (0.006) 1.308 (0.006) 1.426 (0.008)
(0.4, 0.0) 1.231 (0.006) 1.303 (0.006) 1.178 (0.006) 1.179 (0.006)
(0.4, 0.4) 1.449 (0.006) 1.541 (0.007) 1.501 (0.007) 1.601 (0.008)
(0.4, 1.0) 2.355 (0.010) 2.836 (0.013) 2.583 (0.012) 3.833 (0.029)
(1.0, 0.4) 2.604 (0.012) 2.850 (0.014) 2.501 (0.007) 2.541 (0.011)
(1.0, 1.0) 3.658 (0.016) 4.148 (0.020) 3.769 (0.017) 4.788 (0.029)
(1.0, 2.0) 6.845 (0.030) 8.764 (0.043) 7.149 (0.032) 12.804 (0.102)
(2.0, 1.0) 7.678 (0.035) 8.836 (0.044) 7.535 (0.034) 8.116 (0.040)
(2.0, 2.0) 11.469 (0.051) 13.461 (0.067) 11.544 (0.052) 16.247 (0.111)

The corresponding SEAMSE values are enclosed in parentheses.
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ARMA(1,1) or IMA(1,1) disturbance. However, the
AMSE of yt using the ARMA controller is always
smaller than that using the other two controllers, at
a significant level for almost all values of σe. Note
that when σe = 0 and nt is ARMA(1,1) or IMA(1,1)
disturbance, the AMSE of yt using the ARMA con-
troller arrives at its minimum value of one, which comes
from the intrinsic error εt, whereas only when nt does
the IMA(1,1) disturbance does the AMSE of yt using
the EWMA controller achieve optimality when σe = 0.

6.2. Effect of adjustment error

For all three controllers, an upward trend is also seen for
the AMSE of yt as the standard deviation of the adjust-
ment error σw increases when both the measurement er-
ror et and the initial process bias d are 0, and the esti-
mate of the process gain β̂ equals the true value β. Ta-
ble 3 and Fig. 3 show that the AMSE of yt using the
ARMA controller is consistently smaller than that us-
ing the PID controller or the EWMA controller for al-
most all the σw values except when σw = 0 and nt is an
IMA(1,1) disturbance, in which case the ARMA controller
and the EWMA controller are both the MMSE controller.

6.3. Joint effect of both types of error

Table 4 presents the performance of the three controllers
when both measurement errors and adjustment errors ex-
ist. We arbitrarily set the values of pairs of (σe, σw) and
repeated the simulations. As before, the estimate of the
process gain β̂ was set to equal the true value β. The results
show that the ARMA controller’s performance dominates
the other two controllers for all of the cases we analyzed.

6.4. Effect of initial bias

For varying sizes of μd and σd in the prior distribution of
the process initial bias, Table 5 shows the results of the
AMSE of yt using the ARMA controller and the PID
controller for ARMA(1,1) disturbances; Table 6 shows the
results of the AMSE of yt using the ARMA controller and
the EWMA controller for IMA(1,1) disturbances. For sim-
plicity, we set et and wt to 0 and the estimate of the process
gain β̂ to the true value β. It can be seen that for all three
controllers, the AMSE increases with σd when μd is fixed
and the AMSE increases with |μd | when σd is fixed. For
the same pair of values (μd , σd ), the ARMA controller has
a better performance than the other two controllers. When
the PID or EWMA controller is implemented, the AMSE
value increases more rapidly than when the ARMA con-
troller is used as μd deviates away from 0 and σd increases.
The ARMA controller is the MMSE controller for both
ARMA(1,1) and IMA(1,1) disturbances when the initial
bias is 0 (μd = σd = 0), whereas the EWMA controller is

the MMSE controller only for IMA(1,1) disturbance in this
situation.

6.5. Effect of estimation uncertainties in the process gain

In order to focus on the effect of the estimate of the pro-
cess gain on the controller’s performance, we assumed that
measurement errors and adjustment errors were absent and
the initial bias d was 0; i.e., μd = σd = 0. At this time, if nt
is an IMA(1,1) disturbance, the ARMA and EWMA con-
trollers are exactly the same according to Theorem 3, so we
only analyze the case that nt is an ARMA(1,1) disturbance
and compared the ARMA controller with the PID con-
troller. Table 7 presents the sensitivity of the AMSE of yt
to β̂ for both the ARMA and PID controllers. The process
gain β was set to 2.5. It can be seen from Table 7 that the
ARMA controller outperforms the PID controller for all
of the β̂ values we examined. Additionally, an underesti-
mated β (i.e., β̂/β < 1) will hurt the ARMA controller’s
performance more than an overestimated β (i.e., β̂/β > 1).
When β̂ = β, the MSE of the process output yt reaches the
minimum value of one when the ARMA controller is used.

6.6. Effect of estimation uncertainties in the disturbance

Now let us assume that there are estimation uncertainties in
the disturbances; i.e., φ̂i �= φi and/or θ̂i �= θi (i = 1, 2, . . .).
Again, measurement errors and adjustment errors were
not considered and the initial bias d was set to 0. In
this case the ARMA controller is exactly the same as
the EWMA controller when nt is an IMA(1,1) process
from Theorem 3, so we only compared the ARMA con-
troller and the PID controller when nt is an ARMA(1,1)
disturbance. We chose nine values of φ1 and five values
of θ1 as the true parameters for the ARMA(1,1) distur-
bance, so a total of 45 disturbances were investigated.
The disturbances were chosen representatively since from
Table 1 it is evident that not only ARMA(1,1) distur-
bances but also WN, AR(1), Random Walk, MA(1), and
IMA(1,1) disturbances are also included. Table 8 shows
that the ARMA controller’s performance is better than
the PID controller’s in most of the cases. Only when φ1
is close or equal to one is the PID controller’s perfor-
mance better than the ARMA controller’s performance.
The results imply that if an unstationary disturbance is
misidentified to be a stationary disturbance, the ARMA
controller’s performance will be affected more than the
PID controller’s performance. However, to control a weakly
stationary disturbance, the ARMA controller is a better
choice even if the disturbance parameters are misidentified.

We briefly explain why the ARMA controller has such
good performance. From the results in Appendix B, we can
derive that AMSE = σ 2

ε + [(̂θ1 + φ̂1) − (θ1 + φ1)]2̂v2
t , where

v̂t is the last component in l̂t and it represents the state of
the ARMA(1,1) disturbance. First, note that the expres-
sion of AMSE is not related to ĝt, which means at every
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Table 7. Performance with different estimates of the process gain

nt is ARMA(1, 1) φ = 0.859 θ = −0.164 β = 2.5

ARMA controller PID controller
(φ̂ = 0.859 θ̂ = −0.164) (kP = 0.24 kI = 0.58 kD = −0.08)

β̂ AMSE (SE AMSE) AMSE (SE AMSE)

1.5 1.244 (0.007) 1.353 (0.007)
1.7 1.111 (0.005) 1.189 (0.006)
1.9 1.038 (0.005) 1.099 (0.005)
2.1 1.020 (0.005) 1.075 (0.005)
2.3 1.010 (0.004) 1.062 (0.005)
2.5 0.994 (0.004) 1.046 (0.005)
2.7 1.006 (0.005) 1.057 (0.005)
2.9 1.013 (0.005) 1.066 (0.005)
3.1 1.014 (0.005) 1.067 (0.005)
3.3 1.027 (0.005) 1.081 (0.005)
3.5 1.043 (0.005) 1.100 (0.005)

time t the process’s bias can be removed by the control
strategy, even if the parameters θ1 and φ1 are misidenti-
fied. This property explains why the ARMA controller can
remove the initial bias very quickly as shown in Table 5
and Table 6. Second the expression for the AMSE im-
plies that even if θ̂1 �= θ1 and φ̂1 �= φ1 but only if θ̂1 + φ̂1
is close to θ1 + φ1 can the controller’s performance be
close to optimal. Third, if the disturbance is weakly sta-
tionary, v̂2

t will not increase very much even if the dis-
turbance parameters are misidentified. However, if an
non-stationary disturbance—e.g., IMA(1,1) or Random
Walk—is misidentified to be an ARMA(1,1) process, v̂2

t
will rapidly increase. That is why the AMSE increases
quickly when φ1 = 1 in Table 8 for the ARMA controller.

6.7. Performance under an ARMA(2,1) disturbance model

The above studies were carried out based on an
ARMA(1,1) or IMA(1,1) disturbance model. As previ-
ously mentioned, the proposed ARMA controller can
be applied to any general ARMA(p, q) disturbance.
For illustration purpose, we assume a process follows:

yt = xt−1 + nt

and nt − 1.4385nt−1 + 0.6000nt−2 = εt + 0.5193εt−1, εt is
a white noise series having σ 2

ε = 2.21202 = 4.8929; yt is the
deviation from target. The disturbance model is the same
as the ARMA(2,1) model introduced by Jiang et al. (2000).
For simplicity, we further set σe = σw = 0 and y0 = 0. That
is, we ignore measurement errors, adjustment errors, and
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initial bias uncertainties, and only show the ARMA con-
troller’s superiority in controlling higher order ARMA dis-
turbance models. In the offline procedure, the ARMA con-
troller’s parameters and initial values are given as follows:

h =
⎛⎝1

0.5193
1

⎞⎠ , A =
⎛⎝1 0 0

0 0 1
0 −0.6000 1.4385

⎞⎠ ,


z =
⎛⎝0 0 0

0 0 0
0 0 4.8929

⎞⎠ ,

l̂0 =
⎛⎝0

0
0

⎞⎠ = 0, P0 =
⎛⎝0 0 0

0 0 0
0 0 0

⎞⎠ = 0.

For comparison, the PID controller and the EWMA
controller were also used to control the same process. As
there are no optimal choices of kP, kI , and kD for the
PID controller and ω for the EWMA controller when
the process incurs an ARMA(2,1) disturbance, we arbi-
trarily set kP = 0.24, kI = 0.58, kD = −0.08, and ω = 0.2.

We randomly draw one simulation and show the paths
of the process output yt in Fig. 4 when the three con-
trollers are implemented. The paths suggest that the
ARMA controller maintains the process output closer
to the target value than the PID and EWMA con-
trollers almost everywhere in the 100 simulated runs.

7. Conclusions

In this article, we have developed an optimal control al-
gorithm, the ARMA controller, under both the SISO and
MIMO frameworks for the case that the process distur-
bance is a general ARMA(p, q) process, in the presence of
measurement errors and adjustment errors together with
a random initial bias. The ARMA controller was derived
based on the LQG framework without considering the ad-
justment cost. It was shown that the ARMA controller
extends the results of the harmonic rule, Grubb’s extended
rule, and the machine setup adjustment rule derived by Del
Castillo et al. (2003). We derived stability conditions for the
ARMA controller and showed that the traditional EWMA
controller is a special case of the ARMA controller. The
performance of the ARMA, PID, and EWMA controllers
was analyzed via Monte Carlo simulations under multi-
ple scenarios. In almost all of the analyzed scenarios, the
ARMA controller outperformed the other two controllers.

In manufacturing processes, p and q for an ARMA(p, q)
model are almost always less than or equal to a value of
two, which limits the use of ARMA controllers. As the
ARMA(p, q) family covers a large class of disturbances,
we believe that the ARMA controller will find more future
applications; for example, in the field of controlling com-
plex chemical processes. Future research should focus on
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developing optimal control algorithms for ARIMA
(p, d, q) disturbances. Since ARIMA(p, d, q) could be
widely used to model non-stationary or periodic processes,
such an extension deserves more further research efforts.
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Appendices

Appendix A

In order to prove Theorem 1, we need to use the following
Lemma first. Lemma A1 can be proved easily by the results
given in Lewis (1986, p. 315).

Lemma A1. Suppose that there are m controllable factors
and s outputs modeled as deviations from the target value.
Assume that the process is described by the linear equations:

yt = Vτ lt + et, et ∼ N(0, 
e),
lt+1 = �lt + �	xt + zt, l0 ∼ N(̂l0, P0) zt ∼ N(0, 
z),

and the objective function to minimize is quadratic and
equals
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E

[
lτT QlT +

T−1∑
t=1

(
lτt Qlt + 	xτ

t R	xt
)]

. (A1)

Then the optimal solution is as follows:

	xt = −Lt̂lt, (A2)
where (A3)

Lt = (R + �τ St+1�)−1�τ St+1�, t ≤ T − 1,

(A4)
ST = Q, St = �τ St+1� + Q − Lτ

t (R + �τ St+1�)Lt,

t ≤ T − 1, (A5)
and l̂t = �̂lt−1 + �	xt−1

+ Kt
[
yt − Vτ (�̂lt−1 + �	xt−1)

]
, (A6)

Kt = (�Pt−1�
τ + 
z)V

[
Vτ (�Pt−1�

τ + 
z)V

+ 
e
]−1

, (A7)
Pt = (I − KtVτ )(�Pt−1�

τ + 
z). (A8)

Note that in Lemma A1, Q measures the off-target cost
and R measures the adjustment cost. From Equation (9)
we can get that

E

(
T∑

t=1

yτ
t yt

)
=E

[
lτT(HHτ )lT+

T−1∑
t=1

lτt (HHτ )lt

]
+T

s∑
i=1

σ 2
ie.

That is, to minimize E(
∑T

t=1 yτ
t yt) is equivalent

to minimizing

E

[
lτT(HHτ )lT +

T−1∑
t=1

lτt (HHτ )lt

]
.

Comparing this objective function with that in Lemma
A1, we get that Q = HHτ and R = 0, which means that
the off-target cost is measured by HHτ and the adjustment
cost is ignored. Using Lemma A1 directly by replacing
V, �, and � with H, A, and JB, respectively, Equations
(A3)–(A8) become

Lt = (Bτ Jτ St+1 J B)−1 Bτ Jτ St+1 A, t ≤ T − 1, (A9)
ST = HHτ , St = Aτ St+1 A

+HHτ−Lτ
t Bτ Jτ St+1JBLt, t ≤ T−1,

(A10)
l̂t = Âlt−1+JB	xt−1+Kt

[
yt−Hτ (Âlt−1+J B	xt−1)

]
,

(A11)

Kt = (APt−1 Aτ + 
z)H [Hτ (APt−1 Aτ + 
z)H + 
e]
−1

,

(A12)
Pt = (I − Kt Hτ )(APt−1 Aτ + 
z). (A13)

Using the fact that B is an invertible matrix and Jτ H is
an identity matrix, we can derive from Equations (A9)

and (A10) that St ≡ HHτ and Lt ≡ B−1 Hτ A for any
t = 1, 2, . . . , T − 1; i.e., 	xt = −B−1 Hτ Âlt. Substituting
the expression of 	xt into Equation (A11), we get that

l̂t = Âlt−1 + JB(−B−1 Hτ Âlt−1) + Ktyt

− Kt
[
Hτ Âlt−1 + Hτ JB(−B−1 Hτ Âlt−1)

]
= (A− JHτ A)̂lt−1 + Ktyt,

which is Equation (14). Now, we have proved that for any
T > 0, the algorithms (13) to (16) minimize the objective
function E(

∑T
t=1 yτ

t yt). This completes the proof.

Appendix B

As

E
[
lτt (HHτ )lt

] = E
{
E
[
lτt (HHτ )lt|yt−1

1

]}
, (A14)

we can get from Equations (12) and (13) that

E
[
lτt (HHτ )lt|yt−1

1

]
= E

{ [(
lt|yt−1

1

)− E
(
lt|yt−1

1

)]τ
HHτ

[ (
lt|yt−1

1

)
−E

(
lt|yt−1

1

) ]}+ [E (lt|yt−1
1

)]τ
HHτ

[
E(lt|yt−1

1 )
]

= trace
{

HHτ E
{[

(lt|yt−1
1 ) − E(lt|yt−1

1 )
][

(lt|yt−1
1 )

−E(lt|yt−1
1 )

]τ}}+ [E(lt|yt−1
1 )

]τ
HHτ

[
E(lt|yt−1

1 )
]

= trace[HHτ (APt−1 Aτ + 
z)] + (Âlt−1 + J B	xt−1)τ

HHτ (Âlt−1 + J B	xt−1) (A15)
= trace(Hτ APt−1 Aτ H) + trace(Hτ
z H)

= trace(Hτ APt−1 Aτ H) +
s∑

i=1

σ 2
iw +

s∑
i=1

σ 2
iε;

thus,

E

(
T∑

t=1

yτ
t yt

)
=

T∑
t=1

E
[
lτt (HHτ )lt

]+ T
s∑

i=1

σ 2
ie

=
T∑

t=1

trace(Hτ APt−1 Aτ H) + T
s∑

i=1

σ 2
iw

+ T
s∑

i=1

σ 2
iε + T

s∑
i=1

σ 2
ie. (A16)

Note that trace(Hτ APt−1 Aτ H) > 0 for all t = 1, 2, . . .

since Pt−1’s are covariance matrices. That means that

E

(
T∑

t=1

yτ
t yt

)
> T

s∑
i=1

(
σ 2

iw + σ 2
iε + σ 2

ie

)
.
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Appendix C

From Equations (27) and (28) we get that

E(̂lt) = (A− JHτ A)E(̂lt−1) + Kt(I − BB̂−1)Hτ AE(̂lt−1)
+ (J − Kt)(I − BB̂−1)Hτ AE(̂lt−1)

= (A− JHτ A)E(̂lt−1) + J(I − BB̂−1)Hτ AE(̂lt−1)
= (A− JBB̂−1 Hτ A)E(̂lt−1). (A17)

Then combining (A17) and Equation (27), we get that

E(yt) = (I − BB̂−1)Hτ A(A− J BB̂−1 Hτ A)t−1E(̂l0).
(A18)

Let D = A− JBB̂−1 Hτ A. Then, there exists an orthogonal
matrix F such that

Dτ D = F τ diag
(
λ1, λ2, . . . , λ(r+1)s

)
F,

where λ1 ≥ λ2 ≥ · · · λ(r+1)s ≥ 0. Thus,

(Dt−1)τ Dt−1 = (Dτ D)t−1

= F τ diag
(
λt−1

1 , λt−1
2 , · · · , λt−1

(r+1)s

)
F.

Using the Singular Value Decomposition theorem, we
know that there exists another orthogonal matrix U such
that

Dt−1 = Uτ diag
(√

λt−1
1 ,

√
λt−1

2 , · · · ,

√
λt−1

(r+1)s

)
F.

Under Condition (29), we get 0 ≤ λ(r+1)s ≤ · · · ≤ λ1 < 1,
so Dt−1 → 0 as t → ∞. That is, limt→∞ E(yt) = 0. From
Equations (9), (25), (A14), and (A15), we can get that

E
(
yτ

t yt
) = E

[
lτt (HHτ )lt

]+
s∑

i=1

σ 2
ie (A19)

= trace(Hτ APt−1 Aτ H) +
s∑

i=1

(
σ 2

iw + σ 2
iε + σ 2

ie

)
+E

[̂
lτt−1(A− JBB̂−1 Hτ A)τ HHτ

× (A− JBB̂−1 Hτ A)̂lt−1
]

(A20)

= trace(Hτ APt−1 Aτ H) +
s∑

i=1

(
σ 2

iw + σ 2
iε + σ 2

ie

)
+ trace

[
Hτ DE

(̂
lt−1̂lτt−1

)
Dτ H

]
= trace

[
Hτ APt−1 Aτ H + Hτ DE(̂lt−1̂lτt−1)Dτ H

]
+

s∑
i=1

(
σ 2

iw + σ 2
iε + σ 2

ie

)
. (A21)

Under Condition (30), we know limt→∞ E
(
yτ

t yt
)

< ∞.
As Var(yt) ≤ E

(
yτ

t yt
)
, we get limt→∞ Var(yt) < ∞. This

completes the proof. �

Appendix D

The EWMA controller does not consider measurement
error and adjustment error, so eit = wi t = 0. From Equa-
tions (32) and (33) it is easy to get that

ait − ai (t−1) = ωyit. (A22)

Also, from Equations (33) and (A22), we can get Equations
(37). Let git = αi + βi j xj (t−1), then Equation (31) becomes

yit = git + nit, (A23)

and

gi (t+1) = git + βi j	xjt. (A24)

In the EWMA controller, the initial bias d of yt from

the target is assumed to be unknown but a fixed constant
rather than a random variable. That means that it is equiv-
alent to μid = d and σid = 0 in the ARMA controller’s
framework. This completes the proof of Theorem 3.
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